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ABSTRACT

Experiments on the reduction of hypothetical TiO, from the S-component slag of the
Ca0-MgO-Si0,-Al,0,-TiO, system and on titanium transfer to metal saturated with
carbon were carried out up to the equilibrium state which was reached after 6 hours at
temperatures of 1723, 1773 and 1823 K. On the basis of the experimental data, the free
enthalpy and equilibrium constants of reduction of hypothetical TiO, from slag with
simultaneous dissolution of Ti in metal, as well as the activities and activity coefficients of Ti
dissolved in metal and TiO, in slag in equilibrium conditions, were determined.

INTRODUCTION

The behaviour of titanium in the blast furnace, its distribution between
metal and slag, as well as the basic thermodynamic functions have been
quite adequately described in the literature. Investigations into the distribu-
tion of titanium between metal and slag were carried out under conditions
more or less imitating those in the blast furnace with differences in the
composition of the blast furnace slags and metals. Phenomenological ther-
modynamics, however, resulting from these experiments usually consider
pure oxides. Only the present authors [1-5,8] have carried out their experi-
ments under practical or laboratory conditions accurately imitating those of
the blast furnace process.

In these experiments, synthetic multicomponent slags or those obtained
by melting pre-reduced ore sinters were used, as in L¢dzki’s work [2]. From
the experiments, it was found that the presence of titanium in pig iron
resulted from several reactions following titanium transfer from slag to
metal [6,7]. The results obtained by the present authors regarding the
reduction of TiO, from slag displayed more or less significant differences.

Also taking into account the practical importance of the problem,
(titano-magnetite concentrates of Polish polymetallic ores are being consid-
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ered as future components of sinters) an extensive examination of the
behaviour of titanium in the blast furnace has been undertaken. In the
present paper, which is part of planned investigations, the authors examined
the reduction of hypothetical TiO, from synthetic, blast-furnace-type slag
and determined the reduction equilibrium of TiO, in the liquid phases under
conditions corresponding to those in the blast furnace.

EXPERIMENTAL

Experiments were carried out in a Tamman furnace, type LEW, in a
graphite crucible. The chemical compositions of the synthetic slags used in
the CaO-MgO-Si0,-Al,0,-TiO, system are shown in Table 1. Metals
used in experiments were obtained by carbonization of pure iron (Riedel de
Haen) with graphite up to saturation states at temperatures of 1723, 1773
and 1823 K. Carbon concentration [C],,, at these temperatures amounted
to 5.02, 5.15 and 5.28 mass%, respectively. Experiments on reduction of
hypothetical TiO, from slag and Ti transfer to metal were carried out at the
same temperatures, i.e. 1723, 1773 and 1823 K. During the preliminary
investigations, the time taken for the system to reach equilibrium was
determined; it amounted to 6 hours. After that time the Ti and C contents
did not vary within the limits of chemical analysis error. After each
experiment, the crucible containing slag and metal was cooled in an atmos-
phere of argon. Samples of metal were analysed for Ti, Si and Fe contents,
both spectrometrically and chemically, and the carbon concentration in the

TABLE 1

Chemical composition of synthetic, blast-furnace-type slags of the CaO-MgO-SiO,-
Al,0,-TiO, system used in the investigations

Slag Chemical composition (mass%)

no. Ca0 MgO Si0o, Al,O, TiO, Ca0/Sio,
1 46.01 5.08 40.6 7.05 0.53 1.13
2 46.62 5.48 39.18 71 1.5 1.16
3 45.39 5.02 38.8 7.09 2.51 1.13
4 43.84 4.55 40.04 6.71 5.04 1.09
5 423 5.09 36.56 6.86 9.01 1.15
6 38.82 5.24 334 7.12 14.87 1.16
7 45.08 6.49 404 6.82 0.55 1.11
8 43.97 7.11 39.84 712 1.56 1.10
9 43.54 7.12 394 711 2.59 1.10

10 43.02 6.72 38.76 6.64 4.81 1.10

11 41.68 7.24 35.16 6.83 8.96 1.16

38.29 6.85 33.06 6.71 14.56 1.15

[
[ 5]
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TABLE 2
Results of chemical analyses of slags 1-6 and corresponding metals after experiments

Slag Temp. Chemical composition (mass%)

X) Slag Metal
Ca0 Si0O, MgO AlLLO, TiO, Si C  Ti,, Ti,

1 1723 4854 382 537 13 045 101 519 005 004
2 4975 3615 53 105 13 105 529 009 0.08
3 4825 3603 583 726 213 115 521 015 0.1

4 4552 380 479 692 44 079 53 026 014
5 4508 346 539  6.89 810 0.82 533 042 0.18
6 416 3134 564 716 1346 088 535 054 019
1 1773 4903 3783 54 115 041 151 515 007 005
2 509 360 532 742 132 138 519 011 008
3 48.52 3537 543 74 211 134 525 018 012
4 4638 3729 46 711 435 118 527 03 017
5 4428 340 579 679 798 095 52 045 021
6 4301 3102 535 725 1311 103 532 057 024
1 1823 526 366 545 699 035 282 501 011 008
2 53.55 3266 531 7.4 115 265 511 014 011
3 51.87 3246 583 7.4 185 268 515 024 015
4 462 3574 518 699 415 189 515 036 021
5 48 B0 601 689 78 154 511 053 026
6 4405 2967 608 736 1205 155 521 068 032

metal was determined by burning. The slag components were analysed
spectrometrically. The results of these analyses are shown in Tables 2 and 3.

EQUILIBRIUM OF REDUCTION OF HYPOTHETICAL TiO, FROM SLAG IN LIQUID
PHASES

On the basis of the experimental data obtained, the following functions
were calculated: the free enthalpy of reduction of hypothetical TiO, from
slag, with simultaneous dissolution of Ti in metal; the solubility of nitrogen
in liquid metal; the activity coefficients of Ti dissolved in metal and of TiO,
in slag under equilibrium conditions; and the chemical activity of Ti
dissolved in metal and of TiO, in slag under equilibrium conditions. For
calculation of the free enthalpy of reduction of TiO, from slags proceeding
in the experimental conditions, two types of reaction were proposed

TiO,  + 2[C] = [Ti]s + 2CO(g) (1)
and
TiO, . + 2[Cl(grapwy = [Tils + CO(g) )
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TABLE 3

Results of chemical analyses of slags 7-12 and corresponding metals after experiments

Slag Temp. Chemical composition (mass%)

X) Slag Metal
CaO S0, MgO AlLO, TiO, S C T, T,
7 1723 4638 3917 734 702 05 058 521 006 006
8 4618 3829 728 12 139 077 53 011 008
9 4502 3809 727 719 23 085 532 018 0.11
10 4419 3758 706 684 426 082 538 032 018
1 441 3349 746 711 795 079 54 053 022
12 4207 314 70 692 1291 086 543 081 023
7 1773 4762 3747 138 123 041 136 509 008 006
8 4736 6768 729 135 13 138 517 014 01
9 4559 3724 73 122 221 113 526 022 013
10 4539 3534 718  7.02 402 118 527 039 021
11 4552 3321 748 71 785 095 53 057 024
12 4304 3092 7.18 698 1218 092 528 086 029
7 1823 4841 3489 7.65 7.49 033 259 502 013 0.8
8 4831 3481 745 1.39 112 235 506 02 013
9 4819 3501 741  7.36 191 214 511 031 017
10 4696 3472 713 7111 38 186 509 045 024
1 4563 318 753 711 744 151 523 068 029
12 4455 2896 737 70 11.62 15 528 101 034

where TiO, _ is the TiO, in the slag (solid state), [C] is the carbon in the
metal, [T1]S is the Ti dissolved in the metal and [Cl grapny 18 graphite.
In reactions (1) and (2), TiO, transfer to slag according to eqn. (3)

TiO,, = (TiO,) (3)

was not considered because of lack of data.

For reaction (1), positive values for the free enthalpies and values for the
equilibrium constants which were less than unity were obtained. Conse-
quently, one should state that reaction (1) cannot proceed under the present
experimental conditions. For reaction (2), the free enthalpy was calculated
taking into account the following reactions

TiO,, = [Tils + O; (4)
Tig, = [T1]S (5)
2C + 0,=2CO (6)

The sum of these reactions gives reaction (2), and enthalpies of these
reactions for the temperatures of the experiments were calculated from the
following dependences

AGZ, = (223300 — 41.55 X T') X 4.187, J mol ™, after Phelke [9] (7)
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AGZ, = (~13100 —10.7 X T) X 4.187, J mol ", after Narita et al. [10] (8
AGE, = (—53400 — 41.9 X T) X 4.187, J mol ™", after Mamro [11] ©)

Summation of eqns. (7)—(9) gave the functional dependence of the free
enthalpy of reaction (2) on temperature in the form

AGE, = (156800 — 94.15 X T) X 4.187 J mol ™!

The calculated free enthalpy values and the equilibrium constants for
reaction (2) at the particular temperatures of the experiments were:

AG,; = —22690.21, J mol™; K5y = 4.8695

AGS,; = —42395.81, T mol™Y; K595 = 17.7145
and

AGS,; = —62100.4, J mol ™!; K5, = 60.0336

These values for AGF and K show that such a reaction course is thermody-
namically the most probable.
The equilibrium constant K for that reaction can be written

2
_ 9y X pco

2
Ao, X d;

(10)

T

For pure graphite, it can be assumed that a_=1 and the pressure of the CO
generated, according to reaction (6), is

Peo=2po,=2%0.21 =0.42 atm (11)

which leads to the final form for the expression of the equilibrium constant
of reaction (2)

app X 0.42?
K = T (12)

aTio,,

Considering the time of the experiments and the gas atmosphere employed,
it was assumed that the nitrogen in the metal is in the saturation state.
Consequently, nitrogen of saturation concentration was calculated according
to the equation given by Mamro and Pytel [12]

1
lg(¥N;) = (T —1.252) ~Ig £y (13

where f{(’r is the activity coefficient of nitrogen in a multicomponent iron
melt, calculated after Henry from the following dependence

; 3280 .
1g flsl,)T= ("0,75 + T) Xlg fr(~1,)1873 (14)
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while for {573

Ig £, =0.123x Y K& X (%i) +0.00225 x ¥ K@ x (%i)’ (15)
1=1 1=1

where K{¥ is the equivalent coefficient of the ith component interaction on

nitrogen activity (after Henry) in this melt. The values of K’ adopted after

Mamro and Pytel [12] were as follows: for C, K& =1.0; for Ti, K{V =

—5.88; and for Si, K3V = 0.444.

Calculated according to relations (13) and (14), the concentration of
nitrogen of saturation and the coefficients of nitrogen activity in Fe—-Si—-C-N
melts are shown in Tables 4 and 5, respectively. Using the known, simplified
form of the Wagner—Chipman equation, the activity coefficients of titanium
dissolved in metal (after Henry) were calculated for the particular tempera-
tures of the experiments

18 fimy, = eV x [%Ti]s + eF x [C] + e X [%N] (16)

where e{I?, ¢{9 and e are the interaction coefficients of the components
of the metal (Ti, C, N, respectively) on the activity of titanium dissolved in
the melt. The value of the coefficient e{;” = 0.042 was adopted after Mamro
and Yun [11,13]. The value of e was calculated by means of the relation

given by Sumito et al. [14]
©_ 221

o9 = - S - 007
and the value of e}’ from the relation
oo

given by Morita and Kunisada [15].

The term e$?, the interaction coefficient of Si on titanium, was neglected
in equation (16) because of lack of literature data.

The activities, after Henry, were calculated from the relation

a[,Ti]S = frrigg X [%Ti]s 17)

and from the mole fractions of titanium dissolved in the metal and of TiO,
in the slag at equilibrium. Using the well-known relations of Henry and
Raoult, the activities of titanium dissolved in metal and TiO, in slag were
determined.

The results of these calculations are shown in Tables 3 and 4 and Figs.
1-4.

The dependence of the activity of Ti dissolved in metal, under experimen-
tal conditions, on the Ti mole fraction or Ti mass% was calculated by
statistical methods.
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These relations, according to Raoult and Henry, have the following forms
apmy, = 2.12649 X 107°+3.13231 X 107 ¢ X In X(rig, (18)
agry, = 0.063178 + 0.029295 X In [%Ti]s (19)
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at standard deviations 1.0489 X 10~7 and 9.82659 X 10™* for equations (18)
and (19), respectively, with the root-mean-square error being +10%.
The results obtained regarding the contents of titanium dissolved in the
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metal enable the determination of its maximum solubility as a function of

temperature, in the experimental conditions employed

[Ti]s=1.2 X103 x T — 1.85927

(20)
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at correlation coefficients R = 0.92905 and R_,; = 0.917, corresponding to a
significance level of 0.01.
In Fig. 5 literature data [3, 8, 10, 14] on the solubility of Ti in metal as a
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function of temperature are compared with the results of the present work.
As can be seen, the present results are consistent with those of Delve [3] and
Suigura (quoted by Narita and Maekawa [10]). Delve [3] and Stachura [8]
also investigated the transfer of titanium to the metal from TiO, contained
in the slag, as did the present authors. In refs. 10 and 14, the transfer of
titanium to metal from pure TiO, was investigated (Fig. 5). It should be
noted that these quoted authors employed different gas atmospheres.
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SUMMARY

The experiments showed that, in the investigated liquid metal-liquid slag
system, after 6 hours at constant temperature and pressure, no analytically
detectable changes in the chemical compositions of the reacting phases
occurred. It was assumed that the system was close to the thermodynamic
equilibrium state.

The calculated values of the free enthalpies of reduction of hypothetical
TiO, from slag and of the titanium transfer to metal indicated the endother-
mic character of the TiO, reduction.

The calculated values of the free enthalpies and the equilibrium constants
suggest that temperatures of pig iron and slag in the blast furnace should not
exceed 1723 K, in order to limit the reduction of TiO,.

The values of the activities and activity coefficients obtained in the
present work are consistent with those of Narita and Maekawa [10], Sumito
et al. [14] and Stachura [8], particularly the values of a(r,, and firo,, as
well as those of ary;, and vy

The activities of titanium in metal (after Raoult and Henry) in its
solubility conditions were determined in the present work by statistical
methods using relations (18) and (19).

In the course of the present work, values of the titanium solubility
(calculated from eqn. (20) were determined and are consistent with results
reported previously [3, 8, 10] within the limits of experimental error.

Reduced titanium is dissolved in the metal in only a limited amount. The
remaining titanium reacts with carbon and nitrogen forming titanium
carbidonitrides.

On the basis of the results of the present work, the authors intend to
quantitively determine, in forthcoming papers, the formation of titanium
carbidonitrides as a result of the reduction of TiO, from slag in liquid phase,
as well as the thermochemical conditions of both reactions.
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